17210

13141

2 Hours / 50 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Figures to the right indicate full marks.
(3) Assume suitable data, if necessary.
(4) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. Attempt any NINE of the following:

a) State Ohm's law with mathematical equation.
b) Draw a neat labelled circuit diagram of a potentiometer.
c) Define one ampere and one ohm.
d) The potential difference of 60 volt is applied across a capacitor of capacitance $20 \mu \mathrm{f}$. Calculate the charge on the plates.
e) Distinguish between semiconductor and insulator. (Any two points).
f) Draw the energy band diagram of a conductor.
g) State Plank's hypothesis.
h) Mention the formula of minimum wavelength of X-Rays. State meaning of symbols used.
i) What does LASER stand for ?
j) Define population inversion and optical pumping.
k) Mention nano material of zero dimension and one dimension.

1) State two properties of nano material.

Marks

2. Attempt any FOUR of the following:
a) Calculate the resistance of 60 m length of the wire having cross-sectional area of $0.02 \times 10^{-6} \mathrm{~m}^{2}$ and having resistivity $3.5 \times 10^{-7} \Omega \mathrm{~m}$.
b) Area of parallel plate condenser is $0.7 \mathrm{~m}^{2}$ and distance between the two plates is 2 mm . The dielectric constant is 5 . Calculate the capacitance of the condenser.
$\left(\varepsilon_{0}=8.9 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)$.
c) Obtain the balancing condition of Wheatstone's network.
d) Derive an expression for the effective capacitance, when three capacitors are connected in series with each other.
e) Distinguish between n-type and p-type of semiconductor. (Four points)
f) Draw the forward and reverse characteristics of a PN junction diode.
3. Attempt any FOUR of the following:
a) Explain the principle of the photodiode. Give its two application.
b) When light of wavelength $3800 \mathrm{~A}^{\circ}$ is incident on a metal plate electrons are emitted with zero velocity. Calculate the threshold frequency and work function of the metal.
$\left(\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} . \mathrm{S}\right)$
c) Explain the production of X-Rays using coolidge tube.
d) Explain with neat diagram the working of $\mathrm{He}-\mathrm{Ne}$ laser.
e) i) State Einstein's photoelectric equation with meaning of symbols used.
ii) Define stopping potential.
f) State four applications of nano material in engineering field.

13141

2 Hours / 50 Marks

